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Abstract—The solution is presented to the heat-transfer problem with turbulent flow between parallel
plates with heating on one side only. The configuration has some practical significance when con-
sidered as a limiting case of the annulus with a heated core. The velocity and eddy diffusivity variations
due to Deissler are used but are modified in the central region of the passage by assuming a constant
eddy diffusivity. In solving the energy equation the eddy diffusivities for heat and momentum are taken
equal. The eigenvalues and functions necessary to calculate the variation of Nusselt number with
distance along the passages are tabulated for three Reynolds and three Prandtl numbers.

From the two basic solutions of uniform temperature and uniform heat flux the analysis is extended
to certain axial variations which are of practical interest and finally, by using superposition, the result

is obtained for unequal uniform heat fluxes on each side of the passage.

NOMENCLATURE Y, eigenfunction in the solution;
A, ratio of maximum heat flux due to sine Nu, Nusselt number hd/k;
component to uniform heat flux when Re, Reynolds number upd/v;
components act; Pr,  Prandtl number, v/a.
C, constants in the solution of the Sturm-
Liouville equation;
d, mean diameter defined as 4 x area/ Greek symbols o e
. _ ) a, thermal molecular diffusivity;
perimeter = 4y,; ddv diffusivity:
G, fully developed temperature profile & eddy di us.1v1ty,
(having a bulk mean value of zero); A, eigenvalue;
h, heat-transfer coefficient based on the 0 di ionless t t 1l
, imensionless temperature ;
differences of wall to bulk mean ) o qd/k
temperature;; v, kinematic viscosity;
k,  fluid thermal conductivity; Ps density;
q, heat flux at wall; 7, shear stress;
1, temperature; 7w,  shear stress at the wall;
) _ t— 73 dummy variable.
T, dimensionless temperature P ti;
e
u,  velocity; Suffixes
ut,  dimensionless velocity u/+/(7w/p); e, at the entrance position;
X, distance from the entrance; i at one wall;
x*,  dimensionless distance x/d; 0, at the other wall;
¥, distance from the wall; 1, fully developed;
Yo, half-width of passage; 2, in the entrance region;
y*,  dimensionless distance from the wall m, bulk mean value;
YV (Tulp), n, eigenvalue number;
v ’ fd,  fully developed.
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INTRODUCTION

THE annular passage is an important heat trans-
fer geometry in practice occurring in nuclear
reactors and double pipe heat exchangers. At the
present time, however, knowledge of the velocity
and eddy diffusivity variations with turbulent
flow in an annular passage is in an uncertain
state. For turbulent flow in a passage formed by
parallel walls infinite in extent, the flow is fairly
well established and calculations can be carried
out with some confidence. The parallel wall
passage is a limiting case of the annulus
where the radii are not greatly different and, for
this reason, it is of direct interest to study this
case.

The object of this article is to present solutions
to the heat transfer problem with flow between
parallel plates, i.e. to determine the variation
of the Nusselt number with distance along the
passage for a number of thermal boundary
conditions which are of practical interest. An
important case with flow in an annulus is that
when the inner radius is heated and the outer
radius is insulated and attention is focused in
this article on the solution for the paraliel
passage with one side insulated. On the heated
side two cases are considered, namely, uniform
temperature and uniform heat input. These
solutions are then extended to certain axial
variations of temperature and heat input and in
particular to the important case of a sinusoidal
heat input variation together with a uniform
heat input which occurs in reactor passages.
Finally the solution is given for the case in which
there are unequal uniform heating rates on both
sides of the passage.

The fully developed situation for uniform but
unequal heating rates has been studied by
Barrow [1] who also obtained good experimental
agreement. Barrow used similar assumptions to
those made in this article in which the thermal
entrance region is included.

The methods used are essentially the same
as those given by Sparrow, Hallman and Siegel
[2], by Sleicher and Tribus [3] and by Siegel and
Sparrow [4, 5] all of whom gave solutions for
flow in circular pipes. The main difference is
that for fluids in circular pipes the temperature
distribution is axisymmetrical. In such cases the
heat flow in the vicinity of the pipe centre is
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small and the assumptions regarding the eddy
diffusivity variation in this region have little
effect on the result. With unsymmetrical bound-
ary conditions however the variation used by
these writers is unsatisfactory and a different
approach must be adopted.

For axially varying heat input the solution
follows the same procedure as a previous
article by this writer on laminar flow in an
annulus [6].

GENERAL EQUATIONS
The following assumptions are made:

1. Constant fluid physical properties.

2. Velocity profile fully developed at the
duct entrance.

3. Heat transfer in the direction of flow is
negligible.

4. Temperature changes due to dissipative
effects are negligible.

5. Uniform temperature in the fluid at the
duct entrance.

Using the concept of the eddy diffusivity of
heat, the energy equation under these assump-
tions becomes

6t¥ ¢ ot
u@x = ay [(a + &) @:’ (1)

Introducing the dimensionless variables

ut = u//\/(lzgv)’ y+ — '}:‘\/(TE/B), xh= x
p v

the equation becomes

dt o a -+ ep\ ot
B U— 1 — —
B ox+ s ayt [( v )&W]' )

The boundary conditions to be used will be
discussed below.

VELOCITY AND EDDY DIFFUSIVITY
VARIATION
Before equation (2) can be solved, the varia-
tions of u+ and (a + €)/v with y* must be
chosen. The solution can then be undertaken
for a number of arbitrary values of y}. Various
proposals have been put forward for the ut — y*
relation and these are well described by Spalding
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[7], who also proposed a new form in which the
whole range is covered by a single equation.

The velocity profile and eddy diffusivity
variation due to Deissler [8] have been used
successfully to predict heat transfer in turbulent
flow in tubes. The equations also give a close
fit near the wall to the data of Corcoran et al. [9]
who carried out extensive experiments in a
parallel passage. In the central regions, however,
Deissler’s form of the law of the wall together
with a linear shear stress variation leads to a low
or negative value of the eddy diffusivity for
momentum. In this region the equations were
modified by assuming the eddy diffusivity con-
stant and then deriving the velocity profile.
This assumption has been used by other workers
in obtaining results for the fully developed
situation [1, 9, 10].

The value a* which is the position from which
the eddy diffusivity is assumed constant is
somewhat arbitrary. It appears from [9] that it
may vary with Reynolds number but it lies in
the range 0-5y; to 0-7y;. From trial calcula-
tions made using different values of this para-
meter it appears that variations in this range
affect the results only very slightly and a* was
chosen at about 0-5p, which appears to fit
the data of [9] reasonably well.

The assumption is also made that the eddy
diffusivities for momentum and heat are equal
despite the growing evidence that this is rather
doubtful particularly at low Prandtl number.
No reliable relation between the two quantities,
however, has yet been established.

The system of equations used for describing
the velocity and eddy diffusivity variation is as
follows. The range of the equations is from 0 to
2yF and they form symmetrical profiles about
the centre line at y.

0 < y+ < 26, I
dut 1
dyt T+ nfuy+[1 — exp (— n2uty")]
(n = 0-0125)
a+e 1

- = 2y, +p+ — e 2yt
” Pr—l—nu vyt [1 —exp (— r2uty)]
26 < y* << at,

.
Wt = 128426 - - log”

03619836 3)

H.M.—3M

at+e 1 y*
—T:ﬁ;“i— 0'36y+ (1 ‘)”)}) it 1
at=(1/2) (yr + 26)
P ©)
at <yt <y, [
+ +2
wr =" 7 -+ B
Y 2yy;
where
a+
y = 0-36a* (1 ~y—+)
and
1 ar
1 at?
- +
| 7(“ 2y:f)
a4+ €

It also follows from the definitions of #* and
y* that
Yo
Re = 4J uv dyt. 4
0
From this equation the Reynolds number can

be calculated from arbitrarily chosen y; and
some values are given in Table 1.

Table 1. Re — Y,* relation for turbulent
flow between parallel plates

Re Yot
7096 126
14312 226
22036 326
42444 526
46992 626
73612 926
82748 1026
178568 2026
494576 5026
1063416 10026

SOLUTIONS OF THE GENERAL EQUATION
(1) Uniform temperature on one wall, the other
wall insulated
The dimensionless temperature T is defined as

_t_'ti

— ®)

Tte — 8



906

In general, solutions consist of two parts,
the fully developed temperature profile and an
entrance solution which disappears at large x+.
It is clear that there is no fully developed profile
in this case and the whole solution is given by
the entrance solution,

Following the same reasoning as in [2] we
obtain by the method of separation of variables

T = i Cn Yy exp (— 8X2x*/Re) 6)

n=1

where A4, Y, are the eigenvalues and solutions
of the Sturm-Liouville problem

d 'a—i—s)dy 2u” A2
dy ("T, &t TRey
Y=0aty =0

dy
&y’

-Y=0 M

=0atyt =2y

The constants C,, are given by

2 s+
J ve ll+Yn .
Comt0 ®)

J’Zm
0

The solution must be carried out over the
whole gap (2y)) because of the unsymmetrical
boundary conditions. The bulk mean temperature
can be obtained from the solution and by using
equation (7) expressed in the form

ur . Y, . dyt (9)

which results in

- —C, Y
Tm= ivr > n)\:'ﬂexp (— 8Ax7/Re). (10)

n:l

The Nusselt number then follows (using the
heat-transfer coefficient based on the wall to
bulk mean temperature difference)

4Pr\ Cn Y, exp (— 8A +/Re)

ni

Ny = "= =\

exp (— 8A7x"/Re)

(1D
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These equations were solved using the Man-
chester University Mercury Computer Table 2
gives the values of A, and Cy Ym for three
Reynolds and three Prandtl numbers which may
be used in (11) to derive the variation of Nusselt

number with x,

(2) Uniform heat input on one wall, the other
insulated
Tt is better in this case to use a dimensionless
temperature 0 defined from
r—to
= - - 2
The solution is obtained in two parts, 6, the
fully developed temperature profile and 6, the
entrance region profile which disappears as x'
becomes large.

(a) The fully developed profile
A simple heat balance gives
de, 2
dx*  Re.Pr
d a-t+ € ut
dy+ [( v )dv*] 2Re . Pr.y,~

a

(13)

The slope of 4, at the heat input side is given

by
dr
= —k
q (dy>‘ -0

d@) o
(dy o Ay

and the solution is

hence

(14)

2
= I-
0 == * Re P + G

where G is the fully developed profile.
(b) The entrance region

By the same methods as in the constant
temperature case the solution is

B, = 3, CuYnexp (— 822x*/Re)

n-1

(15)

where the A, and Y, are eigenvalues and solu-
tions of
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Table 2. Eigenvalues and constants. Uniform temperature on one side, the other side insulated

Re = 7096
Pr=01 Pr=10 Pr=10
n )\n Cn Yni’ /\n Cn Ym' /\n Cn Yni’
1 4-57581 0-147757 2-55361 0-049787 1-38538 00151622
2 14-0447 0-105989 2-06643 00172367 7-81528 0-00144318
3 237382 0-081551 160894 0-009226 14-5916 0-0007255
4 33-4205 0068169 22-8363 0-0074637 20-6899 0-0006865
5 42-9915 0063112 29-1253 0-007433 259532 0-0008020
6 52-5218 0-060519 35-2911 0-0077921 309724 00009383
7 620815 0057585 41-4927 0-0079426 360476 0-0010268
Re = 73612
1 862619 00741824 6-08550 00350701 3-60242 00139752
2 27-6631 0-040843 23-4587 0-0101968 21-5889 0-0011034
3 47-3420 0-027441 42-0244 0-0052399 40-2887 0-0004807
4 66-5868 0023149 52-6688 0-004032 57-7009 0-0003519
5 85-4110 0-022076 76-6308 0-0035303 74-3562 0-0002944
6 104-234 0-0211419 93-6654 0-0030976 91-1214 0-0002537
7 123-185 0-0199186 110-869 0002764 108-022 0-0002309
Re = 494576
1 168765 0053976 127438 00318024 804710 00128536
2 57-8632 0021774 52:9425 0-006566 499012 0-0009328
3 101-125 0012881 95-9135 00032389 93-2850 0-0004012
4 142-559 0-010684 136-230 00024958 133-390 0-0002894
5 182-613 0-0101542 174-867 00021720 171-765 0-0002337
6 222-795 0-0096531 213784 0-0018972 210-545 0-0001917
7 263-294 0-009272 253-016 0-0017133 249-663 00001646
d [fade\dY]  2A%+Y where G is the difference between wall and mean
o () 55| + R =0 (16) input s
dy* v dy* Re . y: temperatures on the heat input side for the fully
4y developed profile.
120 atytr=0 andyt— 2y, Tal?le 3 gives values of A, and C, to enable
dy* r 7 Jo equation (17) to be calculated.

The symmetrical boundary conditions imply
that the eigenfunctions will be either symmetrical
or anti-symmetrical and a large saving in com-
puting time can be made by using the half-range.

The constants C, are given by

2yo™
J ur ('** G) Yn dy+
Cn - 0

T a7
J' utY2dy*
0

and the Nusselt number is easily shown to be
1
Cy exp (— 822x*/Re)]

Gl —3

n=1

Nu (18)

(3) Axial variation of temperature and heat
input

The above solutions may be extended in a
straightforward manner to axial variations by
the use of Duhamel’s integral (see for example
[4D. If F(x+) is the temperature variation at a
particular value of y+* caused by a unit step in
either temperature or heat input at the wall then
the response Z(x*) to an arbitrary variation
J(x*) at the wall is given by

Z(x) = J:;%F(ﬁ —ndz (19)

This integral has been calculated for a few cases
of interest below.
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Table 3. Eigenvalues and constants. Uniform heat flux on one sza‘e, the other side msm’atea’

Re 7096

Prol Pr 10 Pr 10
G 0-2141052 0-7387098 002581698
G, — 00768648 — 0-0148205 — 0-0018105
n An Ca An Ch An Ca
1 10-5851 0:453048 7-80291 0263048 7-46092 0-090942
2 20-5723 0-140911 15-0006 0-104846 14-2449 0-048317
3 30-3202 0-076073 216133 0-078378 20-1805 0-053720
4 39-7985 0-050089 276359 0-066777 25-1755 0-065565
5 49-2543 0-035389 33-5781 0054367 29-9135 0-069065
6 58-7887 0-026398 39-6470 0-042935 34-7616 0-064725
7 68:2729 0-020616 45-7495 0033627 39-6840 0-057708
Re 73612
Prol Pr10 Pr 10
G; 0:0623753 00131940 00038308
G, — 00181794 — 0-0020704 —0-0002212
n An Cn A Ch An Cn
1 22-0430 0-376900 20-9064 0205371 20-7885 0-072623
2 42-2838 0-133795 399055 0-080378 39-6525 0-029597
3 61-3268 0-080998 57-4954 0-054798 57-0367 0021372
4 79-7950 0-055965 74-2859 0-042367 73-6425 00177233
5 98-4660 0-040181 91-2552 0-033870 90-3637 0-0154379
6 117-3824 0-030419 108-3859 0-028689 107-1940 0-0145074
7 136-2531 0024265 125-3550 0025626 123-7957 0-0146026
Re 494576
Pro1 Pr 1-0 Pr 10
G 0-0167821 0-0030369 0-0007734
G, — 0-0037636 — 00003836 — 000003578
n An Ca Ay Ca An Cy
1 48-7477 0-294157 48-2497 0-167790 48-1997 0062193
2 93-1388 0-112429 920672 0-066072 91-9585 0-026276
3 134036 0-073979 132-2351 0-045081 132-0501 0018122
4 173-328 0-054151 170-6821 0-034155 170-4065 0-013509
) 213-136 0-040350 209-593 0-026287 209-2205 0-010878
6 253-358 0031384 248-853 0-021096 248-3750 0-008509
7 293-274 0023240 287-759 0-017469 287-1742 0-007569

(a) Linear rise of wall temperature
For this case, assuming the other wall insu-

(b) Linear variation of heat input
In this case we assume an imposed heat trans-

lated, then f(x+) = kx+ and the Nusselt number fer on one side only which varies linearly with
is given by distance along the passage, again f(x*) = kx*
and the result is
Cn 2ot Nu =
4Py ZS)@,’R [I — exp (— 8A2x+¥/Re)] e - V -
Nu = n=t S < C
Gi{x™ — D sl 8X2x*/R
Yot (1 exp (— 8A2x+/Re)] {x > el — o0 8] ")]f
8A4/ Re d n=1 (21)
n=1

(20)

The A, and C, Y, are here taken from Table 2
for the uniform wall temperature case.

In this expression the A, and C, are for the
uniform heat input case and are taken from
Table 3.
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(c) Sinusoidal heat input variation superimposed on a uniform heat input
This form of axial variation occurs from the fuel rod in a reactor channel. Here

. wxt
Sfx)=1+ Asin *F

where x; is the passage overall length and A is the ratio of the maximum component of heat flux
due to sine variation to the uniform heat flux component.

The Nusselt number becomes

Nu = Gi

1 +
—(1 +Asin72:-)

Xy

n=1

rxt aT

_ _ g D™ AT
1 ZCnexp( 8/\”x+/Re)—{—Asmx1+ X2
n=1

22)

<2}

A7T Cn

(BN
T (7&)

T2
X

822 axt 8A
n . . M R n . AZ +
X [ cos 7 -+ 7 sin exp (— 8AZx /Re)]

Re

xf Re

Again, in this expression, the A,, Cy are to be taken from Table 3.

RESULTS FOR UNIFORM AND AXIALLY
VARYING BOUNDARY CONDITIONS

Before discussing the results of the calculations
described above it is worth bearing in mind that
for the cases of prescribed wall heat flux the
problem would be to determine the wall tempera-
ture variation with x*. In fact, expressions can
be derived for the wall temperature which are
rather simpler than the above Nusselt number
expressions. However, it is convenient for com-
parison purposes to give the results in terms of
Nusselt numbers and it is not difficult to re-
calculate the wall temperature variation.

The variation of Nusselt number with x+ is
plotted on Figs. 1, 2 and 3 for three different
Prandtl numbers. On each figure the four bound-
ary conditions of uniform temperature and heat
input and linear rise of temperature and heat
input (referred to as “ramp”) are shown.

The influence of the type of boundary con-
dition is very small in the fully developed situa-
tion, a conclusion which was also obtained by
Siegel and Sparrow [5] for round tubes. The
thermal entrance length itself does not change
much over the range of variables chosen but it is
rather longer for these unsymmetrical cases than
those given for round tubes.

Fig. 4 summarizes the fully developed values,
and, for comparison, the results of Barrow [1]

are included. All previous experimental correla-d

tions have been concerned with round tubes and
close agreement with such work would not be
expected. Accepted correlations for round tubes
are for 0-7 << Pr < 100, Nusg = 0-024 Re%8 Pro-4
from Dittus and Boelter given in Eckert and

1000 — T
V
DN
4 Pr=10
100
e
Ll
s | 4 Pr=1-0
= 413
SIS
wt§§:ﬁ: Pr=0-1
10
1
10 10 100 700

X-(-

F1G. 1. Nu vs. x* curves for various forms of thermal
boundary condition on one side, the other side
insulated (Re 7096).

1. Const. T. 3. Ramp T.
2. Const. q. 4. Ramp q.
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. 5 ; . uniform heat flux on one side.
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thermal boundary condition on one side, the other ( Barrow [1))
side insulated (Re 73612).
1. Const. T. 3. Ramp 7. ]

2. Const. gq. 4. Ramp g. %
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384 Pr=10
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. ]
10° L §l 3
384! Pr=10 A
— 182 : 50 -
=
3 1 N
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=~ 4 & 1T N~ ...
Pr=0- . \ﬁ% __
r — A=1-0
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i o i A\ A=10
L § Pure sine
‘o % Pr=0-1 A=1-0
Pure sineray 410
0 4 8 2 16 206 24 28 30
1075 10 100 800 xt
+
X Fic. 5. Nusselt number variation with distance'for a
FiG. 3. Nu vs. x* curves for various forms of half sine-wave heat. flux sqperimposed on a uniform
thermal boundary condition on one side, the other heat flux, one side being insulated (Re 7096,

side insulated (Re 494576). X, = 30).
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600 Drake [12] and for Pr << 0-1, Nugg = 50 4+
\\\ ) 0-025 (Re . Pr)®® from Seban and Shimazaki [13].
P — Pr=iQ . . »
B 210 These lines are added to Fig. 4 and confirm
§\\\ that the calculated values are of the same order
500 as those for round tubes.
Figs. 5, 6 show results for a few cases of
4210\ equation (22); for an arbitrarily chosen value of
\ x{ = 30. Equation (22) has two extreme cases,
400 namely uniform heat input (4 = 0) and a pure
: sine wave heat input (4 == o). The curves show
Pure sane] that in passages of this order of length 30 -
equivalent diameter) the Nusselt number varies
2 300 qury . .
= Experimental values of considerably. It is of interest to show the
A Hall and Price {1 experimental values of Hall and Price {11},
g& o Re =1-06xI0° although these are for a circular tube and at a
N | (round tubes) rather different Reynolds number, which were
200 o7 . . .
\w obtained on a length of 30d and with a series
o 1410 : : :
Prel Ot of step heat inputs adjusted to conform to a sine
™ wave.
O\ A4+10
e \ Pure sine\\] (4) Unegual uniform heat inputs on each side
5o Results for this case can be easily derived from
70 ““""OA a-1o those of case 2 (uniform heat input on one side,
Pure sine "Ny the other adiabatic) by straightforward super-
o 4 i2 6 20 24 28 30 . .
o position of temperature profiles due to a wunit
heat input.
F1G. 6. Nusselt number variation with distance for a As the parallel plate case is entirely sym-
gah; S‘ge'“’a"e heat dfé“"bi‘i‘pe“‘iﬁggf:g d"“&:‘},‘gg{g’ metrical, the only additional value requiring
cat flux, one sl Yo+ :néo)' " calculation is G, which is the fully developed

dimensionless temperature on the adiabatic side
in case 2. This is also quoted in Table 3.

The Nusselt number on the side 7 can be written

1
Nuy = — — : (23)

[Gi -+ 3 Ca Yuiexp (— SX2x+/Re)] + f;.? [Go + X Cu Yaoexp (— 8X2x+/Re)]
n=1 { n=1

In this calculation Yy; is equal to — G; but these are not equal to G,. However, due to the
anti-symmetrical nature of the eigenfunctions, Y,; is numerically equal to Yune, but the Yy,
alternate in sign. The above equation can thus be written

1
Nuy = — p = (24)
Gi[1 — ¥ Cuexp(— 8X2x*/Re)] + q: [Go — Gi 33 Cu(— 1)* exp (— 8A2x+/Re)]
1 1
and for the side 0
1
Nu, = . (25)

Gi[l — 3 Coexp(— 82x+/Re)] + gﬁ [Gi — Gi 3 Cu(— 1)" exp (— 8X2x+/Re)]
1 Q 1
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These expressions may sometimes produce an
unusual behaviour in the Nusselt number. For
example, Fig. 7 shows the variation of Nu, for
gi/go = — 10 and — 7. The Nusselt number in
each case passes through a singular point and
becomes negative. This singular value corre-
sponds to the point at which the bulk temperature
passes the wall temperature and hence the
temperature difference changes sign.

10*

1000

P a oy —T — = 2l
fiopts s SN U : .
1T +
N I
ol A
10" t 1+
1' \ ; - Negative ?—»«h
y S ARV T Inusselt 10T
7 17 ; “{numbers 41}
LA / - O
< A ! RN B
2 ot g =
- o
vild
|
100
,
|
i
t
i N
[N . |
1 | il [
105 0 100
X#

Fic. 7. Nusselt number variation on the side o for
unequal heat fluxes on each side of the passage
(Re 73612, Pr = 1-0).

1. gi/qo = —10. 2. gilg. = —1.
1000 T TTT T T
1 1T - I
Bz 10 ™ 1 :
)i
I 2
T
Fr=1-0
] 0
- 2
F 0P A0
= |
~
2
103 10 PR 100

Fic. 8. Nusselt number variation for equal heat
inputs on each side and for equal heat input and
output on each side (Re 73612).

1. gi/go = — L. 2. qilgo = +1.

1000

A. P. HATTON and ALAN QUARMBY

Two special cases of interest are when ¢;/g, =
+ 1 and — 1 corresponding to equal heat
input and output and equal heat inputs respec-
tively. It is seen on Fig. 8 that the Nusselt
number may be appreciably affected by the
unsymmetrical boundary condition.

Fig. 9 shows the effect of different values of
qilqo on the fully developed Nusselt number.
The ordinate is the ratio of (Nuw), for a par-
ticular value of gi/go to (Nux), for heating on
one side only. Hence all the curves pass through
the point (1-0, 0).

7

A/

z

(M) 0/ (Moo, ¢ /o, <0

I
\

09 o > Pr Re
\':Qo 10 73612
'\\ ® -0 7096
08 N SN
\0 o1 73612
® O-1 7096
713 ' Xe}

Q
4/4,

Fic. 9. Effect of unsymmetrical heat fluxes on fully
developed Nusselt numbers.

In a similar fashion Fig. 10 shows the effect
of the same parameter on the thermal entry
length. This length x/;, is taken as that at which
the Nusselt number 1s within 5 per cent of the
value at infinity. The diagram shows that the
unsymmetrical boundary condition greatly affects
the thermal entrance length.
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Résumé—On présente ici la solution du probléme de la transmission de chaleur dans un écoulement
turbulent entre deux plaques paralléles chauffées sur une seule face. Cette configuration a une significa-
tion pratique quand on la considére comme le cas limite de ’anneau A noyau chauffé. Les variations
de vitesse et de diffusivité turbulente données par Deissler sont utilisées, mais sont modifiées dans
la région centrale du passage en supposant une diffusivité turbulente constante. Dans la résolution
de I'équation de I'énergie, les diffusivités turbulentes de chaleur et du quantité de mouvement sont
considérées comme étant égales. Les valeurs propres et les fonctions nécessaires au calcul de la varia-
tion du nombre de Nusselt en fonction de la distance au long des passages sont tabulées pour trois
nombres de Reynolds et trois nombres de Prandtl.

A partir de ces deux solutions fondamentales correspondant & une température constante et 3 un
flux de chaleur constant, on étend P’analyse au cas de certaines variations axiales intéressantes en
pratique et, finalement, par superposition on obtient la solution pour des flux de chaleur constants

mais différents pour chacun des c¢étés du passage.

Zusammenfassung—Fiir das Wanneubergangsproblem mit turbulenter Stromung zwischen parallelen
Platten bei Heizung nur von einer Seite ist eine Lésung angegeben. Die Anordnung hat praktische
Bedeutung als Grenzfall eines Ringraumes mit beheiztem Kern. Nach Deissler werden die Anderungen
der Geschwindigkeit und des turbulenten Austausches herangezogen; fiir den Kernbereich sind sie
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jedoch durch die Annahme konstanter Austauschgrosse abgewandelt. Fiir die Losung der Energieglei-

chung sind die Austauschgrossen fiir Warme und Impuls als gleich gross angenommen. Die Eigenwerte

und Funktionen, die zur Berechnung der Anderung der Nusseltzahl lings der Platten dienen, sind

fiir drei Reynolds- und drei Prandtlzahlen tabelliert. Aus den beiden Grundlosungen fiir konstante

Temperatur und konstanten Wirmefluss ist die Analyse auf bestimmte achsiale Anderungen, soweit

sie von praktischem Interesse sind, ausgedehnt. Durch Superposition erhit man das Ergebnis fur
konstanten, jedoch fiir jede Wand verschiedenen Wirmestrom.

Anpdoranma—IlpefcraBiIeno peillenye 3a;(a4l 0 HePOHOCE TEMIA UPH TYPOVICHTIOM TeYei
MOeHKAY MTapaNIe LHBIMII ITACTUHAMII TP OIHOCTOpOHHeM Harpepalini. Takas rondurypauus
HMEeT ONpejleTeHHOe HPAKTHYeCKNe BHAYEHe KAk fIPe/leIbHblL CIyYall KOIBIERBUTO KAHATA
(" HATPeRAeMBIM BHYTPEHHIIM cTep:kaeM. CROpOCTh U KoAPPUIHEHT TypHyICHTHOH AId-
Pysun Gepyres no Jaitccnepy, 0A1IAK0 B LeHTPAIbtoil ofaacTi kanaia rosdpunuent typoy-
JeHTHON AuGQYIMH OpIUHAT HocTOAHHLIM. IIpH peineHlN ypaBHeHHIA HHepIHU 3HAYE VTSI
KkodpreHToB TYPOYIeHTHOI AuPOY3UM TellIa il KOTIYEeCTBY BN GePVTCH PABHBIMII.
CoflicTBelHble BHAUYEHIH I (PVHKLIUIN, HEOOXOIHMBIE A pacuéra usMeneHMs uuciaa Hyc-
COTBTY ¢ MBMEHEHHEM PACrTOHHIA BIOJIbL KAHATIOB, TAOGYINPOBAHEL LA TPeX 3HAUEHUIT ducer
Petinoaeaca u Hpanpras.

JBa OCHOBHEIX pellens A1 MOCTOAHHON TeMITePATY Pl H OJIHOPOILHOTO TEIZIOBOI0 MOTOKY
PACTPOCTPAHEHE HAa HEKOTOPLIE? CJIYUAN AKCHATIbHBIX M3MEHEeHNHH, TPeICTABIHIOMMX MPaAKTI4-
ecknit nuTepec. I HakoHeIl, HCOABLBYA CYTICPIOZHINIO, NOJIY4YeH Pe3YJIbTAT JJIA HePaBHBIX

OAHOPOJHLIX TETLTOBBIX MOTOKOB Hdy Kaw 0l CTOPOHe KaHAA.



