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Abstract-The solution is presented to the heat-transfer problem with turbulent flow between parallel 
plates with heating on one side only. The configuration has some practical significance when con- 
sidered as a limiting case of the annulus with a heated core. The velocity and eddy diffusivity variations 
due to Deissler are used but are modified in the central region of the passage by assuming a constant 
eddy diffusivity. In solving the energy equation the eddy diffusivities for heat and momentum are taken 
equal. The eigenvalues and functions necessary to calculate the variation of Nusselt number with 
distance along the passages are tabulated for three Reynolds and three Prandtl numbers. 

From the two basic solutions of uniform temperature and uniform heat flux the analysis is extended 
to certain axial variations which are of nractical interest and finallv. bv usina suoernosition. the result 

is obtained for unequal uniform heat fluxes on eachside of the passage. ’ 

NOMENCLATURE 

ratio of maximum heat flux due to sine 
component to uniform heat flux when 
components act; 
constants in the solution of the Sturm- 
Liouville equation; 
mean diameter defined as 4 x area/ 
perimeter = 4yO; 
fully developed temperature profile 
(having a bulk mean value of zero); 
heat-transfer coefficient based on the 
differences of wall to bulk mean 
temperature; 
fluid thermal conductivity; 
heat flux at wall ; 
temperature; 

t - tt 
dimensionless temperature t--t ; 

e 6 
velocity; 
dimensionless velocity u/~/(T~/P); 
distance from the entrance; 
dimensionless distance x/d; 
distance from the wall; 
half-width of passage; 
dimensionless distance from the wall 
Y1/(QIp); 

Y 

Y, eigenfunction in the solution; 
W Nusselt number hd/k ; 

Re, Reynolds number umd/v; 
pf.3 Prandtl number, v/a. 

Greek symbols 
a, thermal molecular diffusivity ; 
6, eddy diffusivity ; 
A, eigenvalue ; 

8, 
t - tc 

dimensionless temperature *; 

V, kinematic viscosity; 
PT density; 
7, shear stress; 
TW, shear stress at the wall; 
71, dummy variable. 

Suffixes 
e, at the entrance position; 
1, at one wall; 
0, at the other wall; 
1, fully developed; 
2, in the entrance region ; 
m, bulk mean value ; 

2, 
eigenvalue number; 
fully developed. 
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INTRODUCTION 

THE annular passage is an important heat trans- 
fer geometry in practice occurring in nuclear 
reactors and double pipe heat exchangers. At the 
present time, however, knowledge of the velocity 
and eddy diffusivity variations with turbulent 
flow in an annular passage is in an uncertain 
state. For turbulent flow in a passage formed by 
parallel walls infinite in extent, the flow is fairly 
well established and calculations can be carried 
out with some confidence. The parallel wall 
passage is a limiting case of the annulus 
where the radii are not greatly different and, for 
this reason, it is of direct interest to study this 
case. 

small and the assumptions regarding the eddy 
diffusivity variation in this region have little 
effect on the result. With unsymmetrical bound- 
ary conditions however the variation used by 
these writers is unsatisfactory and a different 
approach must be adopted. 

For axially varying heat input the solution 
follows the same procedure as a previous 
article by this writer on laminar flow in an 
annulus [6]. 

The 

I. 
2. 

3. 

4. 

5. 

GENERAL EQUATIONS 

following assumptions are made: 

The object of this article is to present solutions 
to the heat transfer problem with flow between 
parallel plates, i.e. to determine the variation 
of the Nusselt number with distance along the 
passage for a number of thermal boundary 
conditions which are of practical interest. An 
important case with flow in an annulus is that 
when the inner radius is heated and the outer 
radius is insulated and attention is focused in 
this article on the solution for the parallel 
passage with one side insulated. On the heated 
side two cases are considered, namely, uniform 
temperature and uniform heat input. These 
solutions are then extended to certain axial 
variations of temperature and heat input and in 
particular to the important case of a sinusoidal 
heat input variation together with a uniform 
heat input which occurs in reactor passages. 
Finally the solution is given for the case in which 
there are unequal uniform heating rates on both 
sides of the passage. 

Constant fluid physical properties. 
Velocity profile fully developed at the 
duct entrance. 
Heat transfer in the direction of flow is 
negligible. 
Temperature changes due to dissipative 
effects are negligible. 
Uniform temperature in the fluid at the 
duct entrance. 

Using the concept of the eddy diffusivity of 
heat, the energy equation under these assump- 
tions becomes 

Introducing the dimensionless variables 

the equation becomes 

The fully developed situation for uniform but 
unequal heating rates has been studied by 
Barrow [ 11 who also obtained good experimental 
agreement. Barrow used similar assumptions to 
those made in this article in which the thermal 
entrance region is included. 

The boundary conditions to be used will be 
discussed below. 

The methods used are essentially the same 
as those given by Sparrow, Hallman and Siegel 
[2], by Sleicher and Tribus [3] and by Siegel and 
Sparrow [4, 51 all of whom gave solutions for 
flow in circular pipes, The main difference is 
that for fluids in circular pipes the temperature 
distribution is axisymmetrical. In such cases the 
heat flow in the vicinity of the pipe centre is 

VELOCITY AND EDDY DIFFUSIVITY 
VARIATION 

Before equation (2) can be solved, the varia- 
tions of U+ and (U + EL)/V with y+ must be 
chosen. The solution can then be undertaken 
for a number of arbitrary values of yi-. Various 
proposals have been put forward for the ui~ - y k 
relation and these are well described by Spalding 
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[7], who also proposed a new form in which the 
whole range is covered by a single equation. 

The velocity profile and eddy diffusivity 
variation due to Deissler [8] have been used 
successfully to predict heat transfer in turbulent 
flow in tubes. The equations also give a close 
fit near the wall to the data of Corcoran et al. [9] 
who carried out extensive experiments in a 
parallel passage. In the central regions, however, 
Deissler’s form of the law of the wall together 
with a linear shear stress variation leads to a low 
or negative value of the eddy diffusivity for 
momentum. In this region the equations were 
modified by assuming the eddy diffusivity con- 
stant and then deriving the velocity profile. 
This assumption has been used by other workers 
in obtaining results for the fully developed 
situation [ 1,9, lo]. 

The value a+ which is the position from which 
the eddy diffusivity is assumed constant is 
somewhat arbitrary. It appears from [9] that it 
may vary with Reynolds number but it lies in 
the range 0*5$ to 0*7yd_. From trial calcula- 
tions made using different values of this para- 
meter it appears that variations in this range 
affect the results only very slightly and a+ was 
chosen at about 0.5y,+, which appears to fit 
the data of [9] reasonably well. 

The assumption is also made that the eddy 
diffusivities for momentum and heat are equal 
despite the growing evidence that this is rather 
doubtful particularly at low Prandtl number. 
No reliable relation between the two quantities, 
however, has yet been established. 

The system of equations used for describing 
the velocity and eddy diffusivity variation is as 
follows. The range of the equations is from 0 to 
2y’ and they form symmetrical profiles about 
the centre line at y;. 

0 < y+ < 26, 1 
duf 1 ____ 
dy+ 1 + n2u+y+ [ 1 - exp (- n2u+y+)] 

(n = 0.0125) 
ate 1 -- _ ~- 

Y - pr + n2u+y+ [I .- exp (- n2u+y+)] 

26 < y+ < a+, I 

a+e 1 

Yf u+=-- &+B y ; 
where 

and 

1 a+ 
B = 12.8426 + r36 log 26 

It also follows from the definitions of U+ and 
yf that 

Re = 4 J “’ u+ dy+. (4) 
cl 

From this equation the Reynolds number can 
be calculated from arbitrarily chosen y,’ and 
some values are given in Table 1. 

Table 1. Re - Y,+ relation for turbulent 
flow between parallel plates 

~________ -___ 

Re Y0+ 
--- 

7096 126 
14312 226 
22036 326 
42444 526 
46992 626 
73612 926 
82748 1026 

178568 2026 
494576 5026 

1063416 10026 

SOLUTIONS OF THE GENERAL EQUATION 

(1) Uniform temperature on one wall, the other 
ujall insulated 

The dimensionless temperature T is defined as 

1 Y+ U+ = 12.8426 + m6 log 2% 

H.M.-3M 

T = :_-:‘. 
e a 
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In general, solutions consist of two parts. These equations were solved using the Man- 
the fully developed temperature profile and an chester University Mercury Computer. Table 2 
entrance solution which disappears at large x+~. gives the values of h, and CnY,li for three 
It is clear that there is no fully developed profile Reynolds and three Prandtl numbers which may 
in this case and the whole solution is given by be used in (I 1) to derive the variation of Nusselt 
the entrance solution. number with .x-m. 

Following the same reasoning as in [2] we 
obtain by the method of separation of variables (2) Uniform heat input on otle wall, rhe ofher 

insulared 
T = 2 Cn Y, exp (- 8his+/Re) (6) 

M _ 1 

where Xn, Yn are the eigenvalues and solutions 
of the Sturm-Liouville problem 

Y=Oat_r=O 

The constants C,l are given by 

Tt is better in this case to use a dimensionless 
temperature 8 defined from 

(12) 

The solution is obtained in two parts. 0, the 
fully developed temperature profile and 0, the 
entrance region profile which disappears as s 
becomes large. 

(a) The,fully dereloped projile 
A simple heat balance gives 

do, 2 

dx .- Re . Pr 

The solution must be carried out over the The slope of til at the heat input side is given 

whole gap (2~:) because of the unsymmetrical by 

boundary conditions. The bulk mean temperature 
can be obtained from the solution and by using 
equation (7) expressed in the form hence 

I 

4?(; 
(14) 

which results in and the solution is 

T 
m 

= vg + CT1 ‘ii 
X’--exp (- SX;?l_+/Re). (10) 

t,$ z 

Pr& n 

Re2 p, s 1. + G 
. . 

where G is the fully developed profile. 

The Nusselt number then follows (using the 
heat-transfer coefficient based on the wall to (b) The entrance regiorz 
bulk mean temperature difference) By the same methods as in the constant 

4Pr 2 Cn Yii exp (~- 8Azs+/Re) 

temperature case the solution is 

Nu = _$Z!..__ .~~_~~~ ._~ _.. . (11) O2 = 5 C,Y, exp (- 8X$y’/Re) (15) 

Cn Y,Ii 
Nm I 

c 
~~ $- exp (- 8h$x+/Re) where the X, and Y,, are eigenvalues and solu- 

p-1 n tions of 
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Table 2. E~~e~~alaes and constants. Unifarm re~n~erafure on one side, rhe ofher side ~nsata~ed 
___- __.---. ~~__ ~.. _-------L:~zz_z-~_. __ 7=--~~---- ___...~__ -.- 

Re = 1096 

Pr = 0.1 
n k C7l Y,tr’ 
: 14.0447 4.5758 1 0.105989 0.147757 

3 23.7382 0*081551 
4 33.4205 0.068169 
5 42.9915 0.063112 
6 52.5218 0.0~5~9 
7 62.0815 0,057585 

Re = 73612 

1 8.62619 0.074 1824 
2 27.663 1 0.040843 
3 47.3420 0.02744 1 
4 66.5868 0.023149 
5 85.4110 0.022076 
6 104.234 0~0211419 
7 123.185 0.0199186 

Re = 494576 

1 16.8765 0.053976 
2 57.8632 0.021774 
3 101.125 0*01288 I 
4 142559 0.010684 
5 182.613 0~0101542 
6 222.795 OQO9653 1 
7 263.294 0.009272 

Pr = 1.0 

&z Cn Yni’ A, 
2.55361 0049787 1.38538 
2.06643 0.0172367 7.81528 

16.0894 0.009226 14.5916 
22.8363 0+074637 20.6899 
29.1253 0%307433 25.9532 
35.2911 OQO77921 30.9724 
41.4927 OW79426 36.0476 

6.08550 0~039070 1 
23.4587 0.0101968 
42.0244 0*0052399 
52.6688 OtU)4032 
766308 0ao35303 
93.6654 OQO30976 

110.869 OQO2764 

3.60242 0.0139752 
21.5889 0aO11034 
40.2887 OWO4807 
57.7009 oQOO3519 
74.3562 0.0002944 
91.1214 OdX)O2537 

108,022 0%)002309 

12.7438 0,03 18024 
52.9425 0+06566 
95.9135 0.0032389 

136.230 0.0024958 
174.867 OQO21720 
213.784 0.0018972 
253.016 oao17133 

8.04710 @0128536 
49.9012 @0009328 
93.2850 0mo4012 

133.390 0.0002894 
171.765 0.0002337 
210.545 oaOo1917 
249.663 0.0001646 

Pr = 10 

cn Ync’ 
0.0151622 
0@0144318 
OQOO7255 
0.0006865 
0.~8020 
0.~383 
0~0010268 

dY 
---CO aty+=O andy+=@$_ 
dy+ 

The symmetrical boundary conditions imply 
that the eigenfunctions will be either symmetrical 
or anti-symmetrical and a large saving in com- 
puting time can be made by using the half-range. 

The constants Cn are given by 

s 2yo+ 
u’(- G)Yndy+ 

c, = 2+-__ 

s 

(17) 
.’ s+Yidy+ 

0 

and the Nusselt number is easily shown to be 

NU = - 
1 

Gq 11 - g CL exp (- 8h%+/Re)] 
(18) 

Ip=l 

where Ga is the difference between wali and mean 
temperatures on the heat input side for the fully 
developed profile. 

Table 3 gives values of A, and C, to enable 
equation (17) to be calculated. 

(3) Axial t:ariation of temperature and heat 
input 

The above solutions may be extended in a 
straightforward manner to axial variations by 
the use of Duhamel’s integral (see for example 
[4-j). If IQ+) is the temperature variation at a 
particular value of y+ caused by a unit step in 
either temperature or heat input at the wall then 
the response Z(x+) to an arbitrary variation 
f(x+) at the wall is given by 

qx+> = s x+ aj- 
_ F(x+ - z) dz. 

o a-u+ (19) 

This integral has been calculated for a few cases 
of interest below. 
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Table 3. Eigermhes and constants. ~n~~o~~~ heat j&x on one side, the other side insulated 
~------ __=--e_m-m _~__--_.~1~7__ ~. ~_._~~ __. 

Re 7096 

Pr 0.1 Pr 1.0 Pr 10 
Gt 0.2141052 0.7387098 0.02581698 
G - 0.0768648 - 0.0148205 - OGO18105 

n bz Lb Cn An C,, 
1 10.5851 @4&48 7-8029 1 0.263048 7.46092 0.090942 
2 20.5723 0.140911 15WO6 0.104846 14.2449 OGI8317 
3 30.3202 0~076013 216133 O-078378 20.1805 0.053720 
4 39.7985 0.05~89 276359 0,066777 25.1755 0.065565 
5 49.2543 0.035389 33.5781 0.054367 29.9135 0.~~65 
6 58.7887 0026398 396470 0@42935 34.7616 0.064725 
7 68.2729 0.020616 45.7495 0.033627 39.6840 0.057708 

Re 73612 

Pr 0.1 Pr 1.0 Pr 10 

G 0.0623753 0~013194O OtIO38308 
G0 - 0.0181794 - 0.0020704 -0aO02212 
n 

&i30 0.3z900 
A,, en 1 

20?885 
CR 

:. 42.2838 o-133795 20-9064 39‘9055 0.080378 0.20537 1 0.072623 
39.6525 0.029597 

3 61.3268 0.080998 57‘4954 0.054798 57.0367 0.021372 
4 79.7950 0.055965 74.2859 0+4236? 73.6425 0.0177233 
5 98.4660 0.0#~81 91.2552 0.033870 90.3637 0.0154379 
6 117.3824 0030419 108.3859 0.028689 107.1940 0.0145074 
7 136.2531 0.024265 125.3590 0.025626 123.7957 0.0146026 

Re 494576 
Pr 0.1 Pr 1.0 Pr 10 

G1 0.0167821 ON)30369 oaOO7734 
G* - 0.0037636 - OGlO3836 - OWIO3578 
n h2 

0.2% 57 
A,, 

oG790 
h C,i 

: 48.7477 93.1388 0*112429 48.2497 92.0672 0.066072 48.1997 91.9585 0.062193 0.026276 
3 134.036 o-073979 132.2351 OG45081 132.0501 o-018122 
4 173-328 O~OS415i 170.6821 0.034155 170.4069 0.013909 
5 213,136 0.~350 209,593 0.026287 209.2205 0.010878 
6 253.358 0.031384 248.853 0.021096 248*3750 OGO8909 
7 293.274 0.025240 287.759 0.017469 287.1742 0+07569 

~__---‘:L=--;~---~-~~~_.-.._ ._ 

(a) Linear rise of wall temperature 
For this case, assuming the other wall insu- 

lated, thenf(x*) = kx+ and the Nusselt number 
is given by 

c , 
$$$ [1 - exp (-- 8X$x+/&)] 

n 
n=l 

(20) 
The A, and C, Yii are here taken from Table 2 
for the uniform wall temperature case. 

(b) Linear variation of heat input 
In this case we assume an imposed heat trans- 

fer on one side only which varies linearly with 
distance along the passage, again f(x+) = kx+ 

and the result is 

NU = 
.x i _~_ -.------ ~..~ ~----- -- ..-- - 

In this expression the A, and CR are for the 
uniform heat input case and are taken from 
Table 3. 
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(c) Sinusoidal heat input variation superimposed on a uniform heat input 
This form of axial variation occurs from the fuel rod in a reactor channel. Here 

f(x+) = 1 + A sin ng 
1 

where xf is the passage overall length and A is the ratio of the maximum component of heat flux 
due to sine variation to the uniform heat flux component. 

The Nusselt number becomes 

1 + A sin nz 
Nu= cu x: - -. 0-z (22) 

l- -s 
2 

C’n exp (- Shix+/Re) + A sin ns - - 
1 

x 2 cos =$ + $ sin=$ - 2 exp (- Shix+/Re) 
1 1 1 

Again, in this expression, the ha, C, are to be taken from Table 3. 

RESULTS FOR UNIFORM AND AXIALLY tions have been concerned with round tubes and 
VARYING BOUNDARY CONDITIONS close agreement with such work would not be 

Before discussing the results of the calculations expected. Accepted correlations for round tubes 
described above it is worth bearing in mind that are for O-7 < Pr < 100, Nufd = 0.024 Re”+ Pro.4 
for the cases of prescribed wall heat flux the from Dittus and Boelter given in Eckert and 
problem would be to determine the wall tempera- 
ture variation with x+. In fact, expressions can 1000 
be derived for the wall temperature which are 
rather simpler than the above Nusselt number 
expressions. However, it is convenient for com- 
parison purposes to give the results in terms of 
Nusselt numbers and it is not difficult to re- 
calculate the wall temperature variation. 100 

The variation of Nusselt number with x+ is 
plotted on Figs. 1, 2 and 3 for three different 
Prandtl numbers. On each figure the four bound- 9 
ary conditions of uniform temperature and heat 
input and linear rise of temperature and heat 
input (referred to as “ramp”) are shown. 

,. 

The influence of the type of boundary con- 
dition is very small in the fully developed situa- 
tion, a conclusion which was also obtained by 
Siegel and Sparrow [5] for round tubes. The 
thermal entrance length itself does not change I I Illlllll I I IlLI 
much over the range of variables chosen but it is “O IO 100 700 

rather longer for these unsymmetrical cases than 
XC 

those given for round tubes. FIG. 1. Nu vs. xc curves for various forms of thermal 

Fig. 4 summarizes the fully developed values, 
boundary condition on one side, the other side 

and, for comparison, the results of Barrow [I] 
insulated (Re 7096). 

are included. All previous experimental correla-J 
1. Const. T. 3. Ramp T. 
2. Const. q. 4. Ramp q. 
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I ll!llII , ‘, 

ii IO IO0 600 

Xi 
FIG. 2. Nu vs. x+ curves for various forms of 
thermal boundary condition on one side, the other 

side insulated (Re 73612). 

I. Const. T. 3. Ramp T. 
2. Const. q. 4. Ramp q. 

IO 
I.0 IO 100 600 

X+ 

Fro. 3. Nu vs. x ’ curves for various forms of 
thermal boundary condition on one side, the other 

side insulated (Re 494576). 

Re 

FIG. 4. Fully developed Nusselt numbers for 
uniform heat flux on one side. 

( Barrow [ 11) 

I Y44 I 
I / o,=n., ’ w 
, , / / , , ,&=I0 

0 4 8 12 I6 20 24 28 30 

X+ 

FIG. 5. Nusselt number variation with distance for a 
half sine-wave heat flux superimposed on a uniform 
heat flux, one side being insulated (Re 7096, 

x,+ = 30). 
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z 300 
Exoerimentol values bf 1 

I I I 1 Hail and Price ill] / I II 

, / I Y 

0 4 8 12 20 24 28 30 

FIG. 6. Nusselt number variation with distance for a 
half sine-wave heat flux superimposed on a uniform 
heat flux, one side being insulated (Re 73612, 

x,+ = 30). 

Drake [12] and for Pr < 0.1, NUfd = 50 + 
O-025 (Re . PI-)~.~ from Seban and Shimazaki [ 13 1. 

These lines are added to Fig. 4 and confirm 
that the calculated values are of the same order 
as those for round tubes. 

Figs. 5, 6 show results for a few cases of 
equation (22); for an arbitrarily chosen value of 
x; = 30. Equation (22) has two extreme cases, 
namely uniform heat input (A I- 0) and a pure 
sine wave heat input (A == CQ), The curves show 
that in passages of this order of length 30 ‘.; 
equivalent diameter) the Nusselt number varies 
considerably. It is of interest to show the 
experimental values of Hall and Price [i I], 
although these are for a circular tube and at a 
rather different Reynolds number, which were 
obtained on a length of 30d and with a series 
of step heat inputs adjusted to conform to a sine 
wave. 

Results for this case can be easily derived from 
those of case 2 (uniform heat input on one side, 
the other adiabatic) by straightforward super- 
position of temperature profiles due to a unit 
heat input. 

As the parallel plate case is entirely sym- 
metrical, the only additional value requiring 
calculation is Go which is the fully developed 
dimensionless temperature on the adiabatic side 
in case 2. This is also quoted in Table 3. 

The Nusselt number on the side i can be written 

[GI -t 2 Cm Yni exp (- M~x+/Re)] + if [G, + 5 C’, YnO exp (- SXix+/Re)] * 
(23) 

n=l n=l 

III this calculation Ynl is equal to - GI but these are not equal to G,. However, due to the 
anti-symmetrical nature of the eigenfun~tions, YSi is numerically equal to m,,, but the y,, 
alternate in sign. The above equation can thus be written 

Nui zzz __-~_m~~.-__.___._-~-._ 1 ~_________ I .l_l____ 

GI [l - F Cn exp (.-- 8$.x+/Re)J + $ [G, - Gi $ C, (- I)n exp (- Shzx+/Re)] 
(24) 

and for the side 0 

Mu, = -I- ..a~-~- I ~.____ 

Gg [I - Z Cn exp(-- 8X:x+/Re)] + F0 [Gt - Gi g Cfi (- 1)” exp(-- 8Azx+/Re)] 
* (25) 

I 1 
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These expressions may sometimes produce an 
unusual behaviour in the Nusselt number. For 
example, Fig. 7 shows the variation of Nu, for 
qt/qo = - 10 and - 7. The Nusselt number in 
each case passes through a singular point and 
becomes negative. This singular value corre- 
sponds to the point at which the bulk temperature 
passes the wall temperature and hence the 
temperature difference changes sign. 

Two special cases of interest are when qt/qo = 
+I and - 1 corresponding to equal heat 
input and output and equal heat inputs respec- 
tively. It is seen on Fig. 8 that the Nusselt 
number may be appreciably affected by the 
unsymmetrical boundary condition. 

Fig. 9 shows the effect of different values of 
qJqo on the fully developed Nusselt number. 
The ordinate is the ratio of (A&), for a par- 
ticular value of qJqo to (AL), for heating on 
one side only. Hence all the curves pass through 
the point (1.0, 0). 

X+ 

FIG. 7. Nusselt number variation on the side o for 
unequal heat fluxes on each side of the passage 

(Re 73612, Pr = 1.0). 

1. qi/qo = -10. 2. qilq,, = -7. Re 
73612 

7096 

73612 

7096‘ 

In a similar fashion Fig. 10 shows the effect 
of the same parameter on the thermal entry _. _ IO I.0 IO 100 1000 “t length. This length xAO is taken as that at which 

FIG. 9. Effect of unsymmetrical heat fluxes on fully 
developed Nusselt numbers. 

FIG. 8. Nusselt number variation for equal heat 
inputs on each side and for equal heat input and 

output on each side (Re 73612). 

1. qi/qo = - 1. 2. qr/qo = +1. 

the Nusselt number ‘is within 5 per cent of the 
value at infinity. The diagram shows that the 
unsymmetrical boundary condition greatly affects 
the thermal entrance length. 
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Pf=I-0 

Pr= 0.1 

FIG. 10. Effect of unsymmetrical heat fluxes on 
thermal entry length. 
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ResumC-On presente ici la solution du probleme de la transmission de chaleur dans un tcoulement 
turbulent entre deux plaques paralleles chauffees sur une seule face. Cette configuration a une significa- 
tion pratique quand on la considere comme le cas limite de I’anneau a noyau chauffe. Les variations 
de vitesse et de diffusivite turbulente don&s par Deissler sont utilisees, mais sont modifiees dans 
la region centrale du passage en supposant une diffusivite turbulente constante. Dans la resolution 
de l’equation de l’energie, les diffusivites turbulentes de chateur et du quantitt de mouvement sont 
consider& comme &ant egales. Les valeurs propres et les fonctions necessaires au calcul de la varia- 
tion du nombre de Nusselt en fonction de la distance au long des passages sont tabulees pour trois 
nombres de Reynolds et trois nombres de Prandtl. 

A partir de ces deux solutions fondamentales correspondant a une temperature constante et a un 
flux de chaleur constant, on Ctend l’analyse au cas de certaines variations axiales interessantes en 
pratique et, finalement, par superposition on obtient la solution pour des flux de chaleur constants 

mais differents pour chacun des c&es du passage. 

Zusammenfassung-Fur das W%rnetibergangsproblem mit turbulenter StrSmung zwischen parallelen 
Platten bei Heizung nur von einer Seite ist eine Losung angegeben. Die Anordnung hat praktische 
Bedeutung als Grenzfall eines Ringraumes mit beheiztem Kern. Nach Deissler werden die .&nderungen 
der Geschwindigke~t und des turbulenten Austausches herangezogen; fur den Kembereich sind sie 
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jedoch durch die Annahme konstanter Austauschgrosse abgewandelt. Fiir die Losung der Energieglei- 
chung sind die Austauschgrossen fur Warme und Impuls als gleich gross angenommen. Die Eigenwerte 
und Funktionen, die zur Berechnung der Anderung der Nusseltzahl llngs der Platten dienen, sind 
fur drei Reynolds- und drei Prandtlzahlen tabelliert. Aus den beiden Grundlosungen fur konstante 
Temperatur und konstanten Warmefluss ist die Analyse auf bestimmte achsiale Anderungen, soweit 
sie von praktischem lnteresse sind. ausgedehnt. Durch Superposition erhat man das Ergebnis fur 

konstanten, jedoch fur jede Wand verschiedenen Warmestrom. 

AHHuTaqHa-npr;ll’Tan;reao ~WiiitXIit? Xi;IEi~lll o Ilt’p~HtJ~‘C’ Tt?iiXi lipli T~~‘C,j7iWTiiOM Tl?‘ieliIili 

MI?“~KA~ napa.xrejtLubiMn ~~I;IXTIZHR~III rip11 o;liioc~c~poiiife~ iiarpenaiimi. Tanan iioH@rypa~rrn 

IlVWT oiipe;lt?.?rHHOe iipafiTII~iWiiO~ 3iia~~iiIle iiali lIpt’~[‘?;rbHbiir Cnyriati KO:ibiieBuro Kalia.Wl 

1’ iiarpeBaeaiInv niiyrpemirinr cwpwie~i. CfiopoCTb Ii i~n.3@~IiI~IJeiiT T~~~~~JIcHTHo~~ &II+- 

lj~,v.XiIi kp?TCJI no ~aiicvnepg, O~iiaiiO B iiPliT~M~~bIIOfi (JfiJIaCTH IFaiiaJia 1~03~~l~Il~IleHT T@y- 

.I~iiTliOii ,7@&IIIII IipIIHHT iiOCTOHfIiILi>I. IIrlII ~‘CiIi~HIiIi ~paBiieHIiJ3 :>HeprIfII 3Ha’IeHIIJI 

IK@~ii~IIHHTOB T?‘p@WIiTHOii ,IIf@&W TCfi.rIkl II f;OJiI~leCTBfi ,7BZVKtteiiIiJi ikp?_TUf paBHbIk,Il. 

COfiCTBeIiHbie 3Ha’ikZiiIiH Ii ()~Hii41111, Heo~so~IInlhie &ill p”c’i6Ta II:~MCHefiIlH 9iicJIa I-Iy:- 

I‘t’JbTk, C Ii:3hleiiPHIiP~l paCl~‘TWiHIiJi BxOXb fiaH;1JOU, T’d6\.~Il~~OB~iibI &Wi Tpf?X :~iia’leiiIfii ‘II,,‘,‘.11 

Priisonb~ca II Ilp~ii~~~~. 

ABa OCHOBIibiS ~‘CiileliIlH x.XJi iTOCTOHHHOii T?~lIII?~)aT!‘pbI Ii O~HOpO~liOrO TeIKiOBOrO iiOTOI(LI 

~MCiipOCTpaHeHbi Ha HeiFOTUpLit-l cxyiar~i aiiCIiazibHbIx u:Inleeeii5iti, riptZ~CTai3JiHIO~HX iipaHTIrs- 

WIi~l~ IlHTepeC. II HflROHeI[, IlClIO;lb:I~Fi ~yiiepiiO:IIlqrliO, iIOJiyieH p?S)‘nbTaT &Wi Ht?paBIlLiX 

~l~li~JpO;lHLfx TPIKiOBbIx iIOTOKOiI fia Iia~XiJilil CTOpOHe KaHaz?R. 


